Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration.

نویسندگان

  • Takayuki Harada
  • Chikako Harada
  • Shinichi Kohsaka
  • Etsuko Wada
  • Kazuhiko Yoshida
  • Shigeaki Ohno
  • Hiroshi Mamada
  • Kohichi Tanaka
  • Luis F Parada
  • Keiji Wada
چکیده

Activation of microglia commonly occurs in response to a wide variety of pathological stimuli including trauma, axotomy, ischemia, and degeneration in the CNS. In the retina, prolonged or high-intensity exposure to visible light leads to photoreceptor cell apoptosis. In such a light-reared retina, we found that activated microglia invade the degenerating photoreceptor layer and alter expression of neurotrophic factors such as nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), and glial cell line-derived neurotrophic factor (GDNF). Because these neurotrophic factors modulate secondary trophic factor expression in Müller glial cells, microglia-Müller glia cell interaction may contribute to protection of photoreceptors or increase photoreceptor apoptosis. In the present study, we demonstrate the possibility that such functional glia-glia interactions constitute the key mechanism by which microglia-derived NGF, brain-derived neurotrophic factor (BDNF), and CNTF indirectly influence photoreceptor survival, although the receptors for these neurotrophic factors are absent from photoreceptors, by modulating basic fibroblast growth factor (bFGF) and GDNF production and release from Müller glia. These observations suggest that microglia regulate the microglia-Müller glia-photoreceptor network that serves as a trophic factor-controlling system during retinal degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain-derived neurotrophic factor gene delivery to muller glia preserves structure and function of light-damaged photoreceptors.

PURPOSE To test the hypothesis that adenovirus (Ad)-mediated gene delivery of brain-derived neurotrophic factor (BDNF) to Müller cells can protect photoreceptors from light-induced retinal degeneration. METHODS Adult Sprague-Dawley rats received an intraocular injection of Ad.BDNF, control Ad containing the green fluorescent protein (GFP) gene, or BDNF recombinant protein. Animals were then e...

متن کامل

Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration

Glia, the support cells of the central nervous system, have recently attracted considerable attention both as mediators of neural cell survival and as sources of neural regeneration. To further elucidate the role of glial and neural cells in neurodegeneration, we generated TrkB(GFAP) and TrkB(c-kit) knockout mice in which TrkB, a receptor for brain-derived neurotrophic factor (BDNF), is deleted...

متن کامل

Modification of Glial–Neuronal Cell Interactions Prevents Photoreceptor Apoptosis during Light-Induced Retinal Degeneration

Prolonged or high-intensity exposure to visible light leads to photoreceptor cell death. In this study, we demonstrate a novel pathway of light-induced photoreceptor apoptosis involving the low-affinity neurotrophin receptor p75 (p75NTR). Retinal degeneration upregulated both p75NTR and the high-affinity neurotrophin receptor TrkC in different parts of Müller glial cells. Exogenous neurotrophin...

متن کامل

Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa.

PURPOSE To characterize molecular and cellular changes induced by sustained expression of ciliary neurotrophic factor (CNTF) in the rds mutant mouse retina. METHODS Recombinant adeno-associated virus (rAAV) expressing CNTF was injected subretinally, for transduction of peripherin/rds(+/)(-) transgenic mice that carry the P216L mutation found in human retinitis pigmentosa. Characterization of ...

متن کامل

Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina

In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 21  شماره 

صفحات  -

تاریخ انتشار 2002